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ABSTRACT

The Simplex algorithm, developed by George B. Dantzig in 1947 represents a

quantum leap in the ability of applied scientists to solve co)mplicated linear optimiza-

tion problems. Subsequently, its utility in solving finite models, including applications

in transportation, production planning, and scheduling, have made the algorithm an

indispensible tool to many operations i - .-x . ; .

This thesis is primarily an exploration of tOe simplex algorithm, and a dis-

cussion of the utility of the algorithm in unconventional optimization problems. The

mathematical theory upon which the algorithm is based and a general description

of the algorithm are presented. The reader is assumed to have little exposure to

convexity, duality, or the Simplex algorithm itself. More important to the thesis are

the examples that accompany the discussion of the Simplex algorithm. Herein are a

variety of unusual applications for the algorithm, including applications in infinite di-

mensional vector spaces, uniform approximation, and computer assisted tomographic

image reconstruction. These examples serve both to facilitate a better understanding
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I. OVERVIEW OF THESIS

A. THESIS OBJECTIVES

The development of the S -nplex algorithm by Dantzig in middle of this century

represents a milestone in linear optimization techniques. The impact of Dantzig's

work is profound. Results of his work include the revival or introduction of a number

of mathematical disciplines, including convexity and duality theories. Applications

for the Simplex aJworithm, and the accompanying refinements, are vast, and many

continue to explore new and diverse applications.

The majority of the research on linear optimization problems is taking place

in various fields of Operations Research. Of course, the Simplex algorithm itself

is particularly well suited to problems in that particular discipline, rendering rapid

solutions to production planning models, transportation problems, and a variety of

other "real world" applications. A great deal of work was done up to the early

1970's in attempts to mold the Simplex algorithm into an engineering and theoretical

mathematical tool. With the advent of more sophisticated computer hardware and

software, there may be utility in reconsidering the role of the Simplex algorithm in

control, approximation, and other infinite dimensional applications.

This document is intended to serve two main purposes. First, the thesis is

intended to serve as an introduction to linear optimization and to the Simplex algo-

rithm, or a theoretical review for readers already familiar with these topics. Second,



it is intended to present less traditional problems in a manner that is suitable for

solution with the Simplex algorithm.

B. THESIS FORMAT

The thesis is broken into three parts. The first part, consisting of the first

two chapters, is devoted to describing sample problems with which the theory of the

Simplex algorithm is illustrated. Also image reconstruction is introduced, a problem

whose solution by the Simplex algorithm highlights the thesis. These examples are

more fully developed in the latter sections.

The first example is particularly unusual, as we find an orthogonal basis of

the infinite dimensional vector space L2[0, 1]. To the author's knowledge, this is the

first attempt to use the Simplex algorithm in this capacity. The formulations that

result from this problem are particularly easy to understand, and lend a great deal

of understanding to concepts underlying the Simplex algorithm.

The second example may be found infrequently in literature on linear opti-

mization. We seek the best approximation to the exponential function over a closed

interval in the uniform norm sense. That is, we formulate a uniform approximation

problem as a linear optimization problem. The formulation is used primarily in the

discussion of duality.

The final example is again a novel one. We formulate the problem of computer

assisted tomographic (CAT) image reconstruction as a linear optimization problem,

and solve a small sample problem with the Simplex algorithm.

2



The second portion, consisting of Chapters IV and V, introduces the machinery

behind the Simplex algorithm, culminating with a brief introduction to the algorithm

itself. Chapter IV is an exploration of convexity, both as it pertains to sets and

functions. The major emphasis of the chapter is on convex subsets of R'". Chapter V

builds on the convexity results as they pertain to duality. Fundamental concepts of

duality are presented in this chapter, and it concludes with a generic description of

the algorithm.

The thesis concludes with the formulation of the image reconstruction problem

as a linear optimization problem in the general case. The first portion of the chapter

is devoted to the formulation, followed by the statement of the dual problem. Finally,

a sample problem is solved, and some analysis of the appropriateness of the Simplex

algorithm as a solution tool for this particular problem is offered.

3



II. PRELIMINARIES

A. OVERVIEW

We devote this chapter to the preliminaries of linear optimization. We begin

by defining three very different examples, which we develop as a means to explore

linear optimization methods. We then define the optimization problem in general,

and the linear optimization problem specifically. We close with a synopsis of the

assumptions that characterize the linear optimization problem.

B. FIRST EXAMPLES

This thesis extensively discusses three examples. We begin by stating two of

our three examples to which we refer throughout the thesis. Because of its complexity

and importance to this work, the third example is treated separately.

1. Example 1: Generation of an Orthogonal Basis for
L 2[0, 1]

Our first example is one of importance in many areas of approximation.

We wish to find some orthogonal basis for an infinite dimensional vector space. The

utility of such bases may be found in any elementary linear algebra or applied math-

ematics text. The interested reader is referred to [Ref. 1]. The specific vector space

4



with which we are concerned is the space of functions defined by

L'[0, 1] = { f: Ilfil = (ji f (X)2dX) <o00}1.

We note that the above norm is induced by the inner product,

(fg) = j f(x)g(x) dx.

That is,

If II =

In particular, we seek an orthogonal polynomial basis, and derive an

optimization technique to find a polynomial p,, of order n, when we are given a

set of orthogonal polynomials, po, Pl, ... , pIp-. Recursive application of a method for

generating p, leads to a complete set of basis polynomials. The polynomial basis is

of particular importance, as the Weierstrass Approximation Theorem assures us that

any continuous function f, defined on [0,1], may be approximated arbitrarily well

with polynomials [Ref. 2].

There are a number of existing techniques for the generation of or-

thogonal polynomials. For example, the Gram-Schmidt algorithm may be applied to

the sequence {1,Xx 2 ,... ,xx's,.. .. Another approach involves solving a three-term

recurrence that generates the polynomials. We consider an optimization approach,

in which we formulate an optimization problem whose solution gives us pn. It is an

approach that is suitable for inductive iteration.

5



2. Example 2: Uniform Approximation of the Expo-

nential Function

The second example is a specific problem in uniform approximation.

We seek the linear combination of polynomials on the interval [0, 3] that best ap-

proximates the exponential function in the uniform norm sense. The problem, con-

sequently, is to find the coefficients a,, that minimize the expression

max If(t) - et l,
tc[0,3J

where f(t)= 7 ati•.
i__0

We consider specific cases of this example. That is, we seek the polynomial for some

fixed degree, n, that best approximates the exponential function. Note that the

uniform approximation problem is fundamentally an optimization problem. The use

of the Simplex algorithm to solve the problem is, however, unusual.

C. EXAMPLE 3: THE IMAGE RECONSTRUCTION

PROBLEM

The third example is the image reconstruction problem. As with the first two

examples, there are many existing techniques for solving this problem. Unlike the

others, however, this is an active area of modern research, and the best methods

of solution may yet be unknown. The reader is referred to [Ref. 3] for a thorough

treatment of the problem, and to [Ref. 4] and [Ref. 5] for an introduction to some

recently developed solution techniques.

6



Suppose a neurosurgeon wishes to rule out the possibility that a patient, Fred,

suffers from a brain tumor. Further, the physician opts to make use of the CAT

(Computer Aided Tomography) scan device, and examine the inside of Fred's head

without exploratory surgery.

The CAT scan machine works by projecting a finite number of X-rays of known

intensity into tae patient's head from a finite number of positions. The intensity of

the X-rays upon leaving Fred's head is measured. The intensity of the emergent X-ray

depends essentially on the density of Fred's head over the locations through which

the X-ray passes. Having collected data from a number of X-rays, the gathered data

are processed, forming a model of the density of Fred's head. That is, the processing

of the data results in the construction of an image, and presumably, an image that

closely corresponds to the interior of the Fred's head. This data processing, in this

example, constitutes solving the image reconstruction problem.

1. X-Ray Computed Tomography

Understanding the methods of reconstruction requires that we know the

process by which the data for reconstruction are obtained. We begin with a basic

discussion of the manner in which an X-ray moves through an object of homogeneous

density, then derive the manner in which it moves through more complicated media.

It has been shown empirically that the fractional decrease in beamn

intensity of a narrow beam of X-ray photons passing through a homogeneous material

7



Figure 1. An X-Ray Over a Homogeneous Object: lo =Input Intensity. I Emer-
gent Intensity. p = Density.

is given by the relationship ([Ref. 61)

I = -P(AX)?

where lo is the X-ray input intensity, and I is the observed intensity after the ray

passes a distance A~x through the material. See Figure 1. The parameter p is de-

termined by the density of the material.' For two media, the fractional decrease is,

predictably,

TO=

where Az, denotes the distance the X-ray travels through the iVh medium.

I p aism depends, to a lesser extent, on a numbe of other factors, including the nuclear composition
characterized by the atomic number Z, a function of th' ~moseneous material. [Ref. 3] pertains.
For the purpose of this paper, the effects of other parai, .Lers ame assumed to be nil.

8



Let us partition the media through which the narrow beam travels into

n homogeneous segments. Denote the density over a single segment by p(x). The

decrease in this case is expressed by

I =1
I = exp (- P(Xi)Ax1 ) 111

Letting n =, oo, and Axi =, 0, equation (11.1) becomes

lim exp p(zAxi)

TO n-•oo,t--O

-exp(~ p(x)dT),

implying

J p(x)dx. (1.2)

Concluding, let I be the line describing the path of the X-ray, and the function, f(x, y)

is the density of the media over 1. Let ds denote a length over the line I. Equation

(11.2) may be written in the form

I0 = jf(z,y)ds. (11.3)

2. The Radon Transform

This section is an introduction to the Radon Transform, and elaborates

its relation to the data collected with the X-ray. We first define the transform, then

briefly describe some of its properties. The discussion in this section pertains to the

two-dimensional case. That is, we wish to find the density of an object defined over

some subset of R 2. For generalizations into higher dimensions, see [Ref. 3].

9
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We begin by considering some density function f, defined and bounded

on a simply connected, compact subset fl C R2. Define L to be the set of all straight

lines passing through any portion of fl. That is, L = {l i n no 0}. Note that

the cardinality of L is uncountably infinite. The Radon transform is defined by all

possible line integrals of the form:

i = jf (z, y) ds, c J, (11.4)

where ds is an increment of length along 1i, and J is the index set of the set L.

Consider how the lines, over which the integrals above are computed,

are determined. Let IA = [cos 4, sin 40]T. Then for a fixed angle of rotation .0 and

a distance p from the origin, we may identify each line, i, by the set of vectors,

x = [x, y]T, that satisfy the equation

(x, p) = xcos 0 + ysinO = p.

(See Figure 2). Consequently, we may denote each of the line integrals defining the

Radon transform by

1(', P) = j f (x) dx. (1.5)

Again, it is vital to note that the Radon transform is defined by the

collection of all such line integrals. Consequently, to determine the Radon transform

fully, we must know f(4$, p) for all values of 4, and p. When we know the value of the

line integrals for only certain values of 4, and p, we say that we have a sample of the

transform.

10



Figure 2. The Line, L, as it Relates to (p, k)

3. The Problem Statement

We note that the right hand sides of Equations (11.3) and (11.4) are

identical. We conclude, then, that if the X-ray is sufficiently narrow, and we are

able to take an X-ray along all possible lines, the resultant infinite collection of data

corresponds to the Radon transform of the desired density function.

The Radon transform has been shown to be one-to-one ([Ref. 3]). That

is, when all values of the line integrals are known, one may determine the unique

density that produces the observed transform data. However, in most cases of prac-

tical interest, we are presented with but a sample of the transform from which to

reconstruct an image. That is, we are able to collect only a finite number of X-rays.

Additionally, the photon beam is not sufficiently narrow to be a true line integral

defining the transform. In this case, inverting the transform is an ill-posed problem.

11



If there exists one density function whose sampled Radon transform equals a given

data set, then there exist infinitely many density functions, f such that f = b, where

b is the data obtained from a transform sample. It is this fact that leads us to

investigate an optimization approach to the image reconstruction problem.

D. OPTIMIZATION

Each of the examples can be formulated as an optimization problem. Fun-

damental to any optimization problem, and to the Linear Optimization Problem, in

particular, are the concepts of feasible set and objective function.

1. Feasible Sets

To help explain a feasible set, we consider an example. Suppose we

wish to model the production schedule for a baseball and softball manufacturing

plant. The company is required to make at least 500 baseballs and 1000 softballs

each month to satisfy contractual agreements. The company expects to procure 2,000

pounds of stuffing material, and 3,000 square feet of leather covers. Each baseball

requires 1 pound of stuffing, and 1 square feet of leather. The requirements for the

softballs are I pounds and 2 square feet of stuffing and leather respectively. Then

of all possible production schedules, we restrict our attention to those that fulfill

contractual requirements and do not utilize assets which are not available. Let b and

s be the number of baseballs and softballs, respectively, produced in a month. Then

we require that:

b > 500

12



S > 1,000

-b+3s < 2,000

1b 3
Ib+ -s < 2,000. (11.6)

We have defined a subset of all possible schedules by a group of mathematical re-

lationships. In this example, the feasible set is the set of all production schedules

that satisfy the equations of (11.6). In general, we define the feasible set, Y, to be the

collection of values satisfying the mathematical relationships imposed by the problem.

2. The Objective Function

The objective function, g, defined over a feasible set, Y, is the function

by which one models the quality of a solution. In the manufacturing schedule example,

we might logically define the objective function to be profit. Supposing that each

baseball contributes $1 of profit, and each softball, S.75, we could write our objective

function:

g = b + .75s,

and we seek the maximum value of g over Y.

Simply stated, an optimization problem is expressed by "Considering

all members of the feasible set, Y, which member(s) results in the optimum value of

the objective function, g?"

13



E. LINEAR OPTBIIZATION

The Linear Optimization Problem, or LOP, is defined by the criteria that

the objective function and the relatiouships defining the feasible set be linear in our

decision variables, or the variables representing the values we seek. Then we may

write the LOP as follows:

Let a vector c = [c1, c2,.. ., c']T f n, a non-empty index set S, and for every
s e S a vector a(s) C lVn, and a real number b(s) be given. Defining (u, v) as
the standard inner product, we seek a vector y . 1Zn, called the optimal vector,
that minimizes:

(c,y)

while satisfying:

(a(s),y) _Ž b(s),

for all s e S.

We observe that a linear maximization problem may be put into the form

above in the following way. The linearity of the objective function assures us that it

is continuous on Y, and that the feasible set is compact. Then max(f) = min(-f),

and we may equivalently seek to minimize (- f).

A similar change may be made in the constraints to reverse inequalities if

necessary. That is, the problems

Maximize: (c, y)

Subject to: (a(s), y) • b(s)

for all a c S

14



and

Minimize: -(c, y)

Subject to: -(a(s),y) Ž -b(s)

for all s c S

are identical.

1. The Linear Program

The case where the cardinality of S = m < oo defines a Linear Program.

This special case of the LOP is of particular interest as it forms the basis for finding

solutions to LOPs when the index set S is infinite. Throughout this thesis, the reader

may assume that discussion of the general linear optimization problem permits the

possibility of an infinite index set S, unless explicity otherwise noted.

Now, however, we examine this Linear Programming case to clarify the

concept of linearity. The problem becomes

minimize (c, y)

subject to: (a(si), y) _> b(si)

fori -=1,2,...,m, overall y . (1.7)

Let ai(si) denote the jth component of the vector a(si). We may write the problem

as

Minimize CIyI + c2y2 + ... + CY

15



Subject to: al(si) y, + a2(81) y2 + + a,(sl) y,, _ b(s 1 )

ai(s2) y,+ a2(s2) y2 +... +a,.(s2) yn > b(s2)

a, (s.) y, + a2(s,) y2 +.--+ a.(s.) y. b(sm)

over all y f IV. (11.8)

We note that in this case, we may define the feasible set by the notation

ATy _> b (11.9)

with A e •,x,, and the i" column of A is a(si). The ith component of the vector b

is given by b(s,). The linearity assumptions can be expressed, as follows [Ref. 7].2

1. Proportional: The objective function is linear in the feasible set, Y,

in the following sense. Given a variable, yj, its contribution to the objective function

is cyj. So then a change of d units in yj results in a change in the objective function

value of cjd. Similarly, the constraints are linear with respect to the variable yj,

insofar as the contribution of the variable yj to the i"' constraint 's ai(sj)yj. Then

changing the value of yj by d units changes the value of the left-hand-side of the i*'

constraint by ai(si)d units.

2. Deterministic : The components of the vectors a(s) and c are all

determined, as is each scalar b(s). That is, if the components are derived from some

2[P•.f 7] also identifies the qualities of additivitiy and divisibility as requirement of the linear
optimization problem. These qualities are deemed to be inherent in the qualities defined above.

16



stochastic model, their variability is disregarded, and the numbers are fixed for a

given linear optimization problem. Having defined the Linear Optimization problem.

we now turn our attention to exploring the utility of solution techniques to non-

traditional optimization problems.

17



III. THE EXAMPLES, A DIFFERENT
PERSPECTIVE

A. OVERVIEW

This section addresses some of the basic properties of the sets from which we

choose an optimal vector in our examples. It is the structure which we are able to

assign to these sets that permits us to exploit the theories regarding convexity, and

subsequently, the duality results which we derive iD subsequent chapters. We then

introduce assumptions that refine the feasible sets.

B. LINEAR VECTOR SPACES

Before proceding to the specific examples, we first turn our attention to the

matter of linear vector spaces. A vector space, L, is called a ;]near vector space if for

any vectors x, y, z e L and any real scalars a and P the following results hold [Ref.

I]:

1. a(x + y) = (ax + ay)tE L
2. a(f3x) = (a,6)x
3. x+y=y+x

4. x+(y+z) = (x+y)+z

For each of the example problems, the feasible set is a subset of a linear vector

space. Consider the problem of finding an orthogonal polynomial, p,, of order n. It

is elementary that the set of polynomials of order n form a linear vector space. The
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same holds for the problem of finding the polynomial that best approximates the

exponential function on [0, 3]. Finally, in example three, we have specified that we

wish to find a density function, f, from the set of all bounded, piecewise continuous

functions with support over a compact set 11. The set of all such functions is a linear

vector space.

Equally important to our discussion is the concept of a norm. In general, a

norm on a linear vector space L is defined to be a mapping, denoted 1: L -- :+

satisfying the following rules [Ref. 1]. For all x, y c L, and a e R,

1. lIxil Ž_ 0 and Jlxii = 0, *€ x = 0
2. llall = I a I llxii,
3. lix + yll -• lixil + llYli-

Any linear vector space equipped with such a function is said to be a normed linear

vector space. Each of the feasible sets of the examples is a subset of a normed linear

vector space. The first two examples are clearly so. Any norm on R" suffice. In the

third example, we use the infinity norm, defined by:

i ll1100 = sup I f(W) I

as an appropriate norm.
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C. RWINING THE FEASIBLE SUBSET OF THE OR-

THOGONAL BASIS PROBLEM

In the first example, we are interested in finding a polynomial, p,, of order n,

such that:

(p"pi) = ppidx = O,

for all 0 <i < n - 1,

where the result is assumed true for all pi,pj, i # j. That is, given orthogonal poly-

nomials po,pI,.. ,pn-,, we seek a polynomial of order n, orthogonal to all of the

polynomials of lower order. We formulate this problem:

minimize: = fol pnpidz

Subject to: f~o Npi >_ 0, for i = 1,2,..., n- 1. (I1l.1)

Theorem 1. The optimal objective function value for the orthogonal polyno-
mial problem is zero, and any optimal vector, p1 satisfies the desired orthogo-
nality conditions.

Proof: Since we know triangular families of orthogonal polynomials exist, we con-

clude immediately that the optimal objective function value is bounded above by zero.

The constraint gives us zero as a lower bound. That any optimal vector satisfies our

orthogonality conditions is immediate from these facts. That is, a zero objective

function value, in conjunction with the constraint ensures orthogonality. 3

There are infinitely many polynomials that satisfy the above criteria. Specif-

ically, if the objective function evaluates to zero for some p, it clear evaluates to
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zero for a p,, for any a e R•. Consequently, we add the additional constraint that the

polynomial we desire is the monic orthogonal polynomial. The additional constraint

leads rather easily to an n x n linearly independent system of inequalities, where the

unknown element of Rn is the vector whose components are the coefficients of the

desired polynomial.

To illustrate, let us consider the specific cases of finding the first order and sec-

ond order polynomial satisfying (111.1). We input the zeroth order monic polynomial,

p0 = 1, to start the iterative process.

In the first order case, the objective function

j p,(x) p,(x)dx

i=0

is simply
S= 1

J0,p 1 (x)dz =IJ (x +a) dx=-+a.

The optimization problem takes on the form,

minimize: -I + a

subject to: !+a Ž_0,

from which we observe that a - -, and conclude that p1(x) " x - . While the

solution of this particular problem is trivial, there are some important conceptual

principles working here. Considering the problem in terms of the linear optimization

problem, observe that the feasible set is the set of all real numbers a, with a > -1
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As efunction weseek to minimizetakesontheform,C+a,whereCisafixed

c .stant, we clearly wish to select the smallest possible value for a.

Similarly, consider the formulation of the problem of finding the second order

polynomial. We define the polynomials po and pi, as above, and let p2 - X 2 +aIX+ao .

Computing the integrals, we find that

PP2 = P2 + + ,

and

- (3 Jo•V ) 2 m(20 4 ) '-o
22

- -2
1 a,

T2 1 2'

Then the linear optimization problem

minimize: E f• Pip

subject to: f pip,,2!, i ,2,...,n-,

becomes:

minimize: A + Lai + ao

12 1

subject to: +Iai+a 0o _0,

j1 + Ioa >a . (111.2)
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. _ a 0

<a(s1),y> -1/3

S<a(sp),> -- 1/12

Figure 3. The Feasible Set of Example 1: n=2

As we are currently finding the feasible set, and viewing the problem in terms

of the general formulation, we make the following observations. The index set S has

cardinality 2. By rearranging the constraint equations, we find the constraint vectors

are

a(si) = [i 1T

a(s2) = [_ 0

with b(s1 ) - -- , and b(s 2) = - As the vector we seek, y = [ao, ao]Tf R2, we
3 12

may illustrate the feasible set as in Figure 3.

We observe that we have a problem of finding the optimal vector in 7Z2 when

seeking the second order orthogonal polynomial. This property generalizes for any
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order a( polynomial. That is, if we seek a polynomial of order n, we seek a vector,

y c R", giving the coefficients for the optimal monic polynomial.

D. THE FEASIBLE SET IN THE UNIFORM APPROX-

IMATION PROBLEM

Consider the problem of approximating the exponential function, eC, in the

interval [0, 3] by a linear combination of polynomials. We have specified that we wish

to find the combination that minimizes the maximum residual over the interval, and

not the total residual. Hence, we are not solving the least squares problem, where

orthogonality of the approximating functions dramatically simplifies the task. With

the uniform approximation problem, however, orthogonality of the polynomials is not

particularly useful. Therefore, rather than using the orthogonal polynomials above,

we merely specify the degree of the approximating polynomial. Thus we seek a linear

combination of the polynomials

where Pi(t) = ti', i = 0, 1,2,... n.

Consider the specific example for n = 1. We seek a polynomial

(T,y), where T = [1,t]T, and y = [ao, al]TIZ2.

Since the vector T is fixed, the problem is equivalently one of determining the optimal

vector, y c "V•. We summarize with a preliminary statement of the problem.
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minimize: maXt.o,31 I (E:0-i ait) - et

over all y = [ao,..., a,]T 'e Rn+l.

Observe that the objective function is non-linear in the decision variables, cr, i =

1,...,n. Also observe that the feasible set is R*+i in its entirety. That is, any

combination of real coefficients is feasible, since there are currently no constraints.

E. CONVENTIONS OF IMAGE RECONSTRUCTION

For Example 3, we have specified that we wish to find some function, f, defined

on the simply connected, compact set 11 C R 2. Assume that 11 is a circle of radius

1. We also assume that the function that we seek is piecewise continuous on 11. The

piecewise continuity restriction is justified by the physical nature of the problem we

are solving. We call the space of such functions F. Here it is useful to define a basis

for F, and we select a logical basis in view of the problem we wish to solve.

As we have stated, the the formal inverse of the Radon transform is well

defined. Our difficulty results from our inability to compute the uncountably infinite

number of line integrals defining the Radon transform. This difficulty stems first

from the fact that the region over which an X-ray is measured is not one-dimensional.

That is, the region over which the X-ray measures mass has both width and length.

Each X-ray measures the density of the medium over some strip, as in Figure 4.

Additionally, the number of data points from which one reconstructs an image is
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R1

Figure 4. A Single Density Measuring Strip

finite, rather than uncountably infinite, as required for formal transform inversion.

A more accurate perspective from which to view the data obtained by the X-rays is

presented here.

Begin by fixing an angle 0. We associate with each strip of 46, a label (0, i).

We introduce the strip characteristic function, -Y. Define the real valued function -y

defined on f) by the rule

S1, if w lies in strip (0, i)

0, otherwise.

Then an integral defining the sampled Radon transform, for a fixed angle, 4, and a

fixed strip, (0, i), becomes

J 1( ,,(w) dw.
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14 J

Figure 5. A Single View:. Note that strips do not overlap, and cover 0 completely.

Let us define a view to be the set of all strips for some fixed angle, 0. We impose two

restrictions. First, we require that all strips of a view are non-overlapping. Mathe-

matic~ally, if (0b, i) and (4$, j) correspond to two strips of the same view,

-#,.i(w) y,..(w) = 0, for all i:0 j,

for any w e fl.

Second, we require that the strips composing a view completely cover the

compact set. That is, for any w c fl. and every angle -0, there exist some strip (,0, i)

such that

See Figure 5 for a graphical presentation of these properties.
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Assume that we have some manner in which to control the width of the strips.

Then we may select some number of strips of equal width for each view. Identifying

the number of strips for view 0 as nO, and the width of a strip for view 0 as bo, we

may conclude that:

n# x 6# = 1, the diameter of fQ.

For a finite number of views, N., the application of this convention partition

the set f0 into a finite number of polygons. We call the set of these polygons a

polygonal partition of fQ. Figure 6 illustrates the manner in which these polygons are

formed. With each of the resultant polygons, s,, we associate a scalar, area(s3 ), and

a characteristic function,

1 if wcsj, and,

0 otherwise.

It is the set of these characteristic functions, Oi that we use as the basis for the

function space, F.

Theorem 2. For any continuous function, g defined on fl, and any C > 0,
there exist some polygonal partition on n polygons, and some function

n
f CIA•o•

such that 1f - gll. <e.

Note that we may write I1f(w) - g(w)ll.. with the equivalent notation,

1If(w) - g(w)ljI, = max max I (f(w) - g(w))?ki I}.
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Figure 6. Polygons Created by the Views 'j, {i = 0, 1,..., 4}, Each with 4 Strips.

One may easily verify that IIf(w) - g(w)jjo, is a norm. Note that we may use the

maximum over j rather than the supremum, as the polygonal partition is a finite set.

The properties of our function space, F, allow us to use the maximum rather than

the supremum over each polygon, sj.

Proof: Let g be any continuous function in F, and let e > 0 be given. As g is

continuous, there exists some 6 > 0 such that

II(x,Y) - (p,q)ll. < 6 implies that

Ilg(x,Y)-g(p,q)fjo, < 6. (111.3)

We use only two angles, 1 = 0 and 42 = 2. Let n#, = n# = [-i. Note that this

implies that

n-=n#a, x n#,]-
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Figure 7. An Arbitrary Square of the Proof Partition

as in Figure 7. Further, for any two points, (x, y) and (p, q) in a fixed polygon,

IIz,y,) - p, q)ll• < ,6

Let f = 1 aci,. We now consider IIf - gll 0-

Ihf - MI. = max Imax I (f(w) - g(w))', I}

= max {max %kio0&i•,- (X)?A}j-ýl,...,Mn laaj, i----11

= max f~lkay ali - g(w)okj l

= max {maxi aj -g(w)l,j-l,2,..,n -sj

Since g is continuous and each of our polygons is compact, g achieves its maximum

and minimum on each square. For each square, si, define Mi = max.,, g(w), and

mi = min,.,,., g(w). Choose

M, + n•
2
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Using the continuity of g to invoke the intermediate value theorem, there exists some

S( s8 such that g(cý) = aj. Further, we know that w f sj =* I -11w - oo _, 5 . T herefore,

for any square, sj,

max I g(c) - g(w) < e, implying
Wes)

Therefore

max fmax I (f(w) - g(w))b, I}< c

While the above proof uses only two views, one may increase the number of

views, or insist on narrower strips in the partition of 11. Clearly, such a refinement

can not degrade the approximation of the function g, but only maintain or improve

it. We may, at worst, maintain the same constant values over the new polygons that

they were assigned over the coarser partition.

We now demonstrate the utility of defining a basis for F. Let k = Eo no.

That is, let k denote the total number of strips defining sample transform. For any

polygonal partition P on n polygons, the sample Radon transform with respect to P,

which we denote jp, may be written as

fp = ATy
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where A is an n x k matrix, and y e RZ. The matrix A is given by:

ij 0, if 'y(w) Oi(w) = 0 for a~lli

area(si), otherwise.

That is, the A-j represents the area of the i"' polygon if the polygon falls within strip

j. The OA component of y is the mean density of the function f over polygon i.

For any fixed polygonal partition, the feasible set is a subset of the infinite

dimensional vector space, F. Each element of the subset may be thought of as a

vector in IV. Without further restriction, the feasible set becomes the set of all

vectors, y e RW such that ATy = fp. We exploit many of the subsequent theorems as

a result of the ability to translate the problem into R".
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IV. CONVEXITY

A. OVERVIEW

In this chapter, we investigate the concept of convexity, both as it pertains

to sets and to functions. The primary motivation for this investigation comes from

the fact that we may, when certain convexity conditions are met, conclude that local

maxima and minima are global. Stated differently, we may eliminate a portion, often

a large portion, of our feasible set from consideration when attempting to find the

optimal value of our objective function. This chapter lays the groundwork for our

investigation into duality, contained in the following chapter.

This and the following chapter form the foundation for linear optimization,

and, consequently, the concepts and results herein may be found in most elementary

texts on the subject. The material in this chapter is taken primarily from [Ref. 8]

and [Ref. 9], to which the reader is referred for further study.

B. CONVEX SETS

Let us return briefly to the image reconstruction problem. Consider two ar-

bitrary functions, f, g c F, the space of bounded, piecewise continuous functions on

the compact set, fA. Select some arbitrary value for a parameter, A. We require that

A e [0,1]. Consider the function,

h(W) = Af(W) + (1 - A)g(w).
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First note that as both f and are defined on fl, s is h. As f and g are bounded on

a compact set, M = max {supa f(w), supa g(w))} is well defined. We know that

h(w) :5 AM + (1 - \)M, implying that

h(w) < M, for all w fl.

Consequently, the function, h is in F. The important items to note here are that f, g,

anc 3, 1] were each chosen arbitrarily. We conclude, then, for any two elements

f,g e F and for any A c [0, 1] the function,

h = f+(l-A)g cF.

The above example proves that the set F is a convex set. A set C C L, a linear

vector space, is called convex if for any two elements y, z c C and A c [0,1),

x=\Ay+(1 -A)z CC.

Any element y c C of the form y \jyj= , with fi. A,= 1, 0 < Ai < 1 is

called a convex combination of YI, Y2,... Yn- This convex combination is called strict

if A. e (0, 1) for all i. That is, the convex combination is strict if Ai # 0 or 1, for all i.

We now examine a fundamental characterization of convex sets.

Theorem 3. [Ref. 8] Let C be a convex subset of L, an n-dimensional linear
vector space. Every convex combination of the vectors of C is an element of
C.
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Proof: For n = 1, the claim is trivial. Assume that the statement is true for r < n - 1

where n > 1. Now we consider some convex combination

n n

Y = Dkiyi, where yi e C, \i = 1, i 0.
i=1 i=l

If I,• = 1, then we are done, so we suppose that A, , 1. Define

n-I o h

A= A., and A -

Then

n-I

y = A !~ nn

Note that sum of the first term satisfies the conditions of the inductive hypothesis.

That is,

n-I

ZA•-1, and _> 0.

We conclude that

= (A:y) cC, and

Y = "+ \n.Yn-

Now consider the expression:

A +>..

ti---i

n

'k

-3 1.
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Then by thie defnition of a convex snet, y eC. 0

Let A e R~'"', and let b e R'.~ Then it is elementary that the sets

Gi= {x: A TXb}, and

G2= {x: ATX bl,

are convex. We prove the case of G1.

Proof: Let x1, x2 c G1. Then x1, x2 e R'", and A'x 1 = A TX2 = b. We select some

value for A e [0, 1], and consider:

A T(AXI + (I-A)X2 )

- AA TXi+ (I1-A)AT X2

= Ab+(l-A)b

=b. (IV.1)

03

One may show G2 is convex with an identical argument. Note that the set, G2

defines the feasible set of the linear program.

C. HYPERPLANES, POLYHEDRAL SETS, AND EX-

TREMA

A hyperplane H in X" is aset of the form fy :(p,y) = k} where p is a

nonzero vector in IV, and k is a given scalar. It is easily shown that the hyperplane,

H, is a convex set. A hyperplane divides R?" into two (non-disjoint) regions, called
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half-spaces; one is defined by {y : (p, y) _> k} and the other by {y : (p, y) _< k, I

both of which are again convex. Note that the intersection of a finite number, m,

of half-spaces, called a polyhedral set, is also convex, since the intersection may be

interpreted as {y : ATy _> b} where the itA half-space is define as the set

{y: (ai,y) __ bi}.

That is, A is an m x n matrix whose columns are the vectors defining the half spaces.

To illustrate this point, we consider a simple example. Define the vectors
0 1

a,=[ , a2= ,]and a3=
1 -1 0

We use the above vectors to define the three half-planes in I?2,

(a1,y) > -2, (a2 ,y) >_- , and (a3,y) -1

Using the above convention for identifying the matrix A, and the vector b, we find

that

O 11 -2

A and b= 1-i 4

4
1 -1 0 '

We may identify the intersection of the half-planes as the set of vectors, y in "g2

satisfying the equation,

0 -1 2j:
ATy_?b or, I -1 [: 1 2

4
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Y2

<al<a ,>=1-4

/ t2 Y1

<a3, y >--- 1/4

Figure 8. The Polyhedral Set of the Ezample

The intersection of these half-planes is illustrated in Figure 8.

We are interested in simplifying our optimization problem by eliminating por-

tions of the feasible set from consideration. A critical tool in this reduction results

from the notion of an extreme point. We here define an extreme point, and use the

concept to further characterize the convex sets with which we are working in the

example problems.

Let C be a convex set. We call y c C an extreme point of the set C if it can

not be represented as a strict convex combination of the elements of C. Alternately,
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Y2

(1/4. 2)
2

(9/A. 2)

Geometrically, a point y in a polyhedral set C is an extreme point if lies on some n

linearly independent defining hyperplanes of C, where n is the rank of matrix A', a

formed above. Two extreme points are adjacent if the line segment joining them is

an edge of C. That is, the line segment joining them is formed by the intersection of

some n - 1 linearly independent defining hyperplanes of C. See Figure 9.
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Thworem 4. [Rtd. 71 Let C be a polyhedral subset of R". If C is bounded, then
C Iwts at leat n + 1 linearly independent defining hyperplanes.

This theorem is offered without proof. However, its validity for the case of

n = 2 is illustrated in Figure 9, where the polyhedral set in 'R2 has three independent

defining hyperplanes. An immediate consequence of the above is the following:

Theorem 5. Let C be an arbitrary bounded convex subset of R". C has at
least n extreme points.

Proof: Suppose that there are fewer than n extreme points of C. Since any n linearly

independent hyperplanes must intersect in a single point point in 1?", there are fewer

than n + 1 linearly independent hyperplanes, and C is unbounded. 0

D. CONVEX FUNCTIONS

We now introduce convex functions, and their primary characteristic with

which we are interested. This introduction is cursory in nature. For a more de-

tailed exploration of convexity with respect to functions, the reader is referred to

[Ref. 81 and [Ref. 10].

Let C C R" be a convex set. A function f, defined on C, is said to be convex

if for any elements x,y e C, and \ c [0,1]:

f(Ax + (1 - A)y) : Mf(x) + (1 - A)f(y).

If f is convex, then -f is said to be concave. Linear functions are, thus, both convex

and concave. Having alluded to the utility of convex functions, we state an important

result formally.
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Theorem 6. [Ref. 8] Let f be a convex function defined on a closed convex
set, C C 7IV. Then a relative minimum off over C is a global minimum.

Proof: Let f have a local minimum at Yi, and a global minimum at Y2, with f(y') >

f(Y2). Let \ c (0, 1) be given. Because f is convex

f(Ay 2 + (1 - ,\)Y) _< Af(Y2) + (1 - ,)f(yl). (IV.2)

Also, since it is assumed that f(YO) > f(Y2 ), we conclude

,Af(Y 2) + (1 - ,)f(y 1 ) < ,f(yl) + (1 - A)f(yI)

= f(YI). (IV.3)

We now define N,(y 1 ) = {y e 7n : Ily-yiI1 < e}. That is, we define an e neighborhood

about the point, Yi. If

0 < y2<1 and,

Y =AY2 + (1-A)yI,

then y e N.(y1 ). Then

f(Y) =- f(Y+ \(1-A)Y)

V f(Y2) + (1 -\ )f(yI)

< Af(YI) + (1 - A)f(YI)

"= fYI),

contradicting IV.3, and the fact that f has a local minimum at Yl. We have shown,

then, that only absolute minima are possible. )
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If the objective function is convex (which it must be since we are considering

only linear objective functions), we can be sure that we have found an optimal vector

if it is locally optimal. This fact forms the basis for the Simplex algorithm, which we

explore in the following chapter.

Theorem 7. If an optimal solution to the Linear Program exists, that is, if
min {f(y)} exists and is finite for some y in the feasible set, C C IV, then
there is an optimal extreme point.

Proof: Let y c C be an optimal vector, but not an extreme point. Let a linear

objective function f defined on the polyhedral set C be given. Since I f 1< oo at

an optimal vector, one may clearly add sufficient number of hyperplanes to bound

the feasible set if it is not already bounded, without changing the optimal solution.

Assume that f is optimal at y. We consider two cases.

Case 1: The vector y does not lie on an edge of C.

We first recognize that y can be written as a convex combination of the extreme

points of C, since there are at least n linearly independent extreme points. Let

E = {e : e is an extreme point of C}. Let E have cardinality r. Then we may write

y - ,= A•iei. The linearity of the objective function, f, implies f(y) = E!= ,if(ei).

Let ej be some extreme point such that f(ej) > 0, and let us decrease the value of Aj

by 6 > 0 units. We may do so without leaving the feasible set since we are not on an

edge. Note that if no such extreme point ej exists, then we may increase the value of
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A,, and the argument still holds. Call the new element of the feasible set y'. Then

f(Y') = f (ijei + (Aj - )ej)

= f (EkAei + Ajej--6ej))

= f(y - 6ej)

- f(y) -- f(ej)

< f(y),

implying that y is not the optimal vector, a contradiction. Hence if y is a non-extreme

optimal vector, it must lie on an edge of C.

Case 2: The vector y lies on an edge of C.

Since y is not an extreme point, but is on an edge, it is on the line segment

joining two extreme points, el and e 2 of C, and may be written as y = Ael +-(1 -A)e 2,

for some A c (0,1). Parameterize the line segment between the points el, e2 by the

equation y(t) = te, + (1 - t)e 2 , as t : 0 -+ 1. Fix some t c [0,1], , and let y' =

(1 - t)el + te 2. Then

f(y') - f(y) = (1 - t)f(e1 ) + tf(e2) - Af(ei) - (1 - A)f(e 2)

- -(t -- (1 - A)))f(e 1 ) + (t -- (1 -- A))f(e2 )

= (t- (1 - A)) (-f(el) + f(e2))

> 0, for all t, since y is the optimal vector.

Since y is not an extreme point, it can be represented as a strict convex combi-

nation of el and e2. Therefore, we may choose some i (0, 1), such that
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> (-X). Then

(I -(,-) > 0, implying

-f(el) + f(e2 ) > 0. Therefore,

f(e2) > f(el).

An identical argument yields the result that f(e 2) :5 f(el). We conclude that f(el) =

f(e2), and that any t c [0,1] results in an optimal vector. Choosing t = 0, or t = 1

places us at an extreme point. 0

An alternate proof may be found in [Ref. 7].

E. AN ASIDE: THE CONVEX HULL

We desire to work with convex subsets of linear vector spaces, as they have

useful characteristics when we attempt to solve more general optimization problems.

However, there is no guarantee that an arbitrary set is convex. For such cases, we

define the convex hull of an arbitrary set A C L, denoted Conv(A), as the set of all

possible convex combinations of the elements of A, where L is a linear vector space.

An example of a convex hull of a non-convex set in 7V2 is displayed in Figure 10.

Clearly, if A is convex, then Conv(A)=A. The intuitive notion that the convex

hull of a set, A C L is the smallest convex subset of L in which A is contained, and

conversely, are easily proven theorems (See [Ref. 8]).

The real utility of the convex hull stems from the fact that any element of

Conv(A) may be written as a convex combination of the elements of A. Generating
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Exonions required to form convex hull

Figure 10. Forming the Convex Hull

the convex hull does not add any new extreme points. This is offered without proof.

The interested reader should consult [Ref. 8]. Consequently, if we are solving an

optimization problem with a linear objective function on a non-convex set, A, then

solving it over the convex hull of the set A, rather than over the set A, itself, does

not change the solution of the problem.

45



' I '

V. DUALITY AND THE SIMPLEX
ALGORITHM

A. OVERVIEW

The concept of duality makes it possible for us to bound the optimal value for

the objective function, f, and in many cases, to solve the LOP more efficiently. As

before, let c be a vector in R'". Let S be an arbitrary index set. We have previously

stated that for every s c S, we associcate a vector a(s) in RR", and a scalar b(s). The

general form of the linear optimization problem is:

minimize: (c, y)

subject to (a(s), y) _> b(s), for all s c S

over all y . Rn (V.1)

We know that we achieve an upper bound for the optimal value of the pref-

erence function as soon as we find an element of the feasible set. However, we have

no such simple criteria for determining a lower bound. Intuitively the prospect of

finding some feasible vector is less daunting than solving the problem. Using duality

allows us to form an associated optimization problem, find a feasible vector in the

associated problem, and use the feasible vector to derive a lower bound of the origi-

nal problem. The associated optimization problem is called the Dual. In some cases,

we may bound the original optimization from below arbitrarily well using the dual
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problem. We refer to the original linear optimization problem as the primal, P. The

primal, P, and its associated dual, D, are referred to as a Dual Pair.

Define the value of a LOP to be the optimal objective function value. We seek

properties that allow us to approximate the solution of a linear optimization problem

arbitrarily well, and to determine when the optimal value of the linear optimization

problem and its corresponding dual are the same.

This chapter, in conjunction with the previous chapter, forms the fundamental

principle underlying the Simplex algorithm. The reader is again referred to [Ref. 7]

and [Ref. 9] for more detailed descriptions of the material of this chapter.

B. WEAK DUALITY

We begin with the generic linear optimization problem, (V.5). The first the-

orem that allows us to bound the problem from below is stated here. Note that we

allow for an infinite index set S.

Theorem 8. The Duality Lemma [Ref. 9] Let the finite subset

{si,s2 ,...,s,} C S,

and the non-negative vector

x = 1x1, X29,..., 9 ]T

be such that:
c = a(s )xI + a(s2 )x2 +... + a(sq)xq.

Then for any feasible vector y = [yl,y2,... , Yn]T in the feasible set of the
optimization problem, P,

b(sl):i + b(s 2 )X 2 + ... + b(sq)zq < cTy.
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Proof: Since y is a feasible vector,

(a(sj),y) = a(s.)Ty > b(s1), for i = 1,2,... ,q.

Further, since zi Ž 0 by assumption,

9 9b(si)xi:5 F_••(a(Si)Ty) Zi,

implying,
9 /T

E"30bis-,x _< Xia(si) y

CT

As an example, consider the problem of finding the monic second order poly-

nomial, p2 , orthogonal to both, Po = 1, and pi = ' -x-. Recalling from Equation

(111.2), the primal of this problem is

minimize L + a, + CIO
12 1

subject to: !+.al +ao Ž_0,

"I + >'ja 2 0. (V.2)

Disregarding the constant in the objective function does not affect the choice of an

optimal vector. Consequently, the optimal vector for (V.2) and the LOP

mininize: (c, y)

subject to: (a(si),y) _ b(si)

(a(s2),y) -e b(s2) (V.3)
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where

c, a(sI)= [] a(s2)=[] and

I I0 b(S2) 1--2

are the same.

Attempting to satisfy the hypothesis of the duality lemma, we seek a non-

negative liiiear combination of a(s1 ) and a(s2) that sums to c. That is, we seek a

non-negative solution to the equation:

I I2 ZI7

1 0 X2 1

Clearly, the only such vector satisfying the equation is the vector x = [1, 1]T. Conse-

quently, the optimal value of the primal problem of V.3 can be no better than

z1 b(sl) + X2 b(s2)

=- I) + (--L)

Because the optimal vector of (V.2) must be the same as that of (V.3), the value of

(V.2) is bounded below by

5 5
12 12OT

as expected.

C. THE DUAL

Having stated the duality lemma, we move to a formal definition of the dual,

and similarly, the dual pair. We begin with the special case of a Linear Program.

The dual of a linear program
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• q r . .. *

minimize: (c, y)

Subject to: ATy > b

is defied to be

maximize: (b, x)

Subject to: Ax = c

with zi 2 0, for i 1,2,...q. (V.4)

Note that the dual of an LP is an LP itself. To be feasible above, we require a

non-negative linear combination of the constraint vectors to sum to the vector c. The

vector f becomes the objective vector in the dual. These facts highlight the difficulty

of defining the dual of an infinite LOP. Because of the difficulty of computing infinite

sums (possibly uncountably infinite), we require a variation of the dual for the infinite

Recall the generic LOP

minimize: (c, y)

subject to (a(s),y) 2 b(s), for all s e S

over all y e Rn. (V.5)

As it proves useful in the statement of the dual, we write (V.5) in the alternate form

minimize Mi C
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subject to: E7.1 a,(s)y, Ž_ b(s)

for all S. (V.6)

The du.a optimization problem, D, is defined to be:

Find a finite subset {sf, 32, ... , s,} C S, and the non-negative numbers, zX, X2 ,... - ,

such that the expression:

is maximized, subject to the constraints
9

F zia,(s,) = Cr,,
imi

for r = 1,2,...,n. (V.7)

Tha is, the dual of the infinite dimensional LOP is to find some optimal

finite subset of the index set, and then solve the resulting LP dual. In keeping with

convention, we call the process of taking a finite subset of an infinite set discretizing. It

is important to note that the dual is, in general, a non-linear problem in 2q variables,

since both the discretization and values for the coefficients, zx are unknown. However,

once we have chosen a subset of S, the problem is linear in the unknowns zi. Further,

one might suspect that if a sequence of discretizations of S is chosen systematically,

then we may be able to arrive at an acceptable approximation of the solutic of

the associated primal problem, assuming one exists. That is, we may get arbitrarily

close to the solution of the dual problem, and consequently, find an arbitrarily good

approximation of the solution to the infinite dimensional primal optimizaton problem

by solving a sequence of Linear Programs. This is a basic premise behind solving

infinite dimensional linear programs with the Simplex algorithm.
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D. APPROXIMATING THE EXPONENTIAL FUNCTION

The problem of approximating the exponential function with an n" degree

polynomial is now analyzed more closely. Of particuk - interest is how duality results

enable us to determine the relative quality of a given approximation, and how they

allow us to bound the error in the problem.

1. The Primal Problem

Recall that we stated the problem of approximating the exponential

function over the inverval [0, 3] as

Determine the polynomial

f(t) =
i=0

that mininimizes the expression

SUP i f(t) -e I.
*40,3j

Let us formulate this problem in terms of the standard linear optimization problem.

We relabel the index set T vice S and define it to be the interval [0, 3]. Realizing that

the objective function above is a scalar valued function, as a first step we reformulate

the problem as

minimize: 0+1

subject to: I E (ait') - e' - a,,+,, for all t c T.

Eliminating the absolute values, we replace each constraint with the equivalent pair

of constraints,

- ait' + C•> -a,,+, and, jait' - e' > -a,,+,.
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Rewriting, we arrive at

n!

- Qit•+Q,+l >_ -et and,
i=o

n

Eaiti+an+l >_ et.
i=O

Thus, each element of the index set T has two associated constraint vectors. Let

y = [ao,0a1,...,G+i] T . We have, for each t e T, a vector

a(t) -- Ito0, t I, ... ,tn, I IT ,

and the two constraints

-(a(t),y) _Ž -e', and

(a(t), y) >) et.

It proves useful in the formulation of the dual problem to distinguish the two con-

straints associated with each t e T. As a notational device we identify the vectors

1 -1

t -t

P2 _t2

a(t+)- and a(t-)

tn• _tn

1 1

It is important to note that the use of functional notation for the vectors a(t+) and

a(t-) is used for convenience only. No such functional relationship exists, as there
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an two consint vectors for each t e [0, 31. We distinguish the vectors by labeling

two sets, T+ and T-. Note that T+ -- = [0, 3].

Similarly, for each t e T, we have the scalar, b(t+) = et, and b(t) Ce'.

We finally identify the objective function vector, c = (0, 0,..., 11 ( ?+2. The final

formulation of the primal problem, P, is

minimize: CTy

subject to: a(t+)Ty >_ b(t+)

a(t-)Ty 2! b(t-) for all t e T

overall y c R"+2 . (V.8)

2. The Dual Problem

Having put the primal in the desired form, we turn our attention to the

dual. Referring to the general form of the dual as in (V.7), we seek the finite subset

T= {ti, t2,... , tIj C T, and the vector, x c IV, that maximizes the expression

q

while saitisf'ying the constraints

Szia,(ti) - c", for r =1,...,n.
i-i

First make the substitutions b(ti) = et-, and a,(ti) = tr. As we have

defined the set T to be T+ u T-, the above formulation is equivelent to the following.

Find the subsets
4+ T+
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and f-d- {t-,t ,..., t-} C T-

and non-negative scalars z+,+,... +.+, and zx,-z,. . with which to as-

sociate each element of the respective sets, that maximizes

and satisfies the constraints

9+ 9 -

= + X7 1. (v. 9)

The formulation (V.9) may be written in the simpler form

maximize: ELI eti~z

subject to: E=1 xitr = 0, for r = 0,1,..., n

Mi'= I Ti < I. (V.IO0)

where ti c [0, 3] for all i. The problems are equivalent in the respect that one may

derive from a feasible solution of one a feasible solution to the other. The proof for

this statement may be found in [Ref. 9].

3. Qualitative Analysis of Solutions

We begin by restating the duality lemma in the terms of the uniform

approximation problem.

Theorem 9. [Ref. 9] Let the finite subset t C T, and the real numbers
XIv29... , X. be feasible for the dual problem of equation (V.10). Then the
following holds for any y c I•"+I :

9 
tt r

5<sup5 tr' etj. (V.11)
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As is a direct consequence of the duality lemma, it is not proven here, though

the proof may be found in [Ref. 9].

Let us consider the problem of approximating the exponential over T

with a quadratic polynomial. Then from (V.8), the objective function vector c is

equal to [0,0,0, 1 ]T. With each t+and t- e T = [0,3], we associate the vectors and

scalars

a(t+) = [t+0 t+1 t+ 2 11 and b(t+) = +

and

a(t-) = [-t-0 - t-I - t- 2 I]T and b(t-) = e

respectively. The dual problem, from equation (V.10), is to find the set {i, i2,... 1} =

T C [0, 3] and associated non-negative scalars that maximize

q
E xieii

i--i

while satisfying

xziif = 0, for r =0,1, 2, and

q

Ziu 1 1. (V.12)
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Let us arbitrarily choose the subset t to be {0, 1, 2,3). Hoping to apply the restated

duality, Theorem 9, we first require a solution to the equation:

X1
1111 0

X2

0 1 2 3 = 0 (V.13)

0149 L 0
X4|

Every such vector is of the form x = [-a, 3a, -3a, a]T, where a is an arbitrary
real number. Scaling in order to satisfy the constraint, =1 I x1 (_ 1, we let

S= I x 1

x= 2-i, _ -, . The hypothesis of the Theorem 9 satisfied, we conclude that

the best quadratic approximation to the exponential function over T = [0, 3] in the

uniform norm sense, differs from et by at least:

4
Eziet = -e°+2e'-2e 2 +.e 3 ý-.6340.
i=1

E. STRONG DUALITY

Consider the three different possibilities we may encounter in the solution of

the Linear Optimizaton Problem. Referring to the optimal objective function value

of the minimization problem as V(P), and to the optimal value of the dual as V(D),

we list the possible conditions, or states, of the problem as follows [Ref. 9]:

1oisti (IC) The feasible set is empty, so that no
solution is possible.

B.UlJde. (B) There exist at least one feasible vector, and
among such feasible vectors, at least one is optimal.
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Unbounded: (UB) There are feasible vectors such that
the objective function may be made arbitrarily small.

A duality gap is said to occur when V(P) # V(D), that is, when the optimal

values of the dual pair are not the same. We hope to find general conditions that

preclude the existence of a duality gap. Theorems that allow us to disregard the

possibility of a duality gap are called strong duality theorems.

1. The Dual and Convexity

We briefly characterize the dual problem as it relates to our discussion

of set convexity. Before continuing, we require the definition of the Convez Cone. Let

C be a convex subset of 1Vn. The convex cone of C, denoted X(C), is defined to be

the set of all vectors y c 7Rn, such that y = Ax, where A > 0, and x f C.

In Chapter IV we constructed an example of a polyhedral set using the

vectors

a(si)= , a(s2)= , and (s3)=
1 1 0

The resultant polyhedral set is illustrated in Figure 8. The darkened region of Figure

11 illustrates the addition to the set, that together with the original polyhedral set,

forms the convex cone. The darkened portions of the Figure extend to infinity.

Consider the specific case of the convex cone of the constraints of the

linear optimization problem. We have expressed the constraints by (a(s), y) Ž_ b(s),

for all s c S. Define A. = {a(s) : s c S} C R'n. We know that A. is convex from
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X2

x2

<a 3 ,x>= 14

Figure 11.. Formation of the Convex Hull.

equation (IV.1). We refer to the convex cone of A,. as the moment cone of the

optimization problem, P, and denote X(A.) by M,,.

Having defined the moment cone, we arrive a fundamental characteri-

zation of the dual problem, D.

Theorem 10. [Ref. 9] The dual problem, D, is feasible (i.e. the feasible set is
not empty) if and only if C f Mn.

The proof may be found in [Ref. 9). The result follows directly from

the definition of the dual. An A1ternate interpretation of this result is as follows. The

dual problem is feasible if and only if we may express the vector c as a non-negative

combination of the constraint vectors of the linear optimization problem, P.

The following is a generalization of the theorem that allows us to express

every element of the convex set, A, as a convex combination of the extreme points.
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The theorem prove vital in the dicuaion of the Simplex algorithm, as it allows us

to bound the required number of elements, sq e S, in the discretization of our index

set when forming the dual.

Theorem 11. The Reduction Theorem [Ref. 9] Let the vector Z C Rn be
a non-negative linear combination of the vectors, z1 , z2 ,... ,IZq. That is,

q
Z -"•xiZi,

with xi 2_ 0 for all i. Then toe may also write:

q

z = x zi, with x, -_ U,

where at most n of the numbers xi are nonzero. Moreover, the set of vectors
{zi} corresponding to the nonzero scalars x! are linearly independent.

Proof: We first note that if zI, z 2,..., are already linearly independent, then

q _5 n, and the initial representation of z already satisfies the theorem. Assume,

then, that q > n, and, consequently, that the vectors, z1 , z2,..., ZA are not linearly

independent. Then we know that we may write

9

izi = 0,

where at least one ai 0 0. For any r : a, $ 0, we have:

. zr Iz. (V.14)

Substituting into the equation of our hypothesis, we have:

Z = (xi - Xr. Zi.

i*r
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We have, then, a representation of z by a linear combination of q - 1 of the vectors,

zi. We must show, then, that the expression (xi - x, ') may be made non-negative,

for i = 1,2,.. .,r - 1,r + 1,... ,q. Select some a,. > 0. We can clearly do so, as if

all ai are negative, we may multiply by -1 and still have the desired result that

-aizi = 0. Then in equation (V.14), if ai < 0, we may conclude that

Xi- xr,- _> 0,
cr

since xi, ; and ar are each nonnegative.

We now consider the case that aic > 0. Then we must show that - > EL.aO - or

We may accomplish this quite simply, by selecting the r that minimizes the expression,

L over all a,. > 0. We have expressed z as a non-negative linear combination of q- 1
orv

of the vectors, Z1, z 2,... ,Zq, and may continue inductively until we have the desired

result. 0

The reduction theorem yields this immediate result. Let S = {sl,..., s,} C

S, and the set of non-negative numbers {fX,... , xJ} be feasible for the dual problem,

D. That is:

q

Zxia (i) =c,

for r = 1,2,..., n. Then there is a subset, S'={si,....., si,} and a set of non-negative

numbers, { x, ... , I X} that is also feasible for D. Note that we have not included

the objective function of the dual in our reduction above. It is not necessarily true,

then, that we need only to consider discretizations of S with cardinality n. That is,
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lot us reduce the non-neptive linear combination

i9
x zia(si), where q > n

to the combination

i=-I

where no more than n of the scalars, x' are non-zero. Then it may be that

q i
xzib(si) 16 xbs)

Consequently, we include the optimal objective function value in the set of equations

for reduction. This convention requires that we define a new moment cone, which we

call, M,+,.

M.+ =x(A')

where A' is formed by the vectors,

b(3,)

a'(s) = () Rn+l, i=l,2,...,n.

The dual, then, may be stated

maximize: co

subject to: c c Mn+i, where c = [co, cl,..., c']T

This formulation is useful in discussion of strong duality results.
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2 Solvability Conditions

We move from the infinite case to the case of a finite index set. The

following results are presented, without formal proof, though they may be found in

[Ref. 9] or [Ref. 10]. These theorems enable us to determine when the dual problem

has a solution. That is, we seek to determine when there exists at least one vector of

our feasible set that minimizes our objective function. Note the distinction between

solvability and boundedness as defined in the state section above. That is, we may

have feasible vectors, but no optimal vector in our feasible set. The discussion in

this section pertains to the finite case of the linear optimization problem. Readers

interested in an examination of some criteria for the convergence of the LOP in the

case of an infinite index set are referred to [Ref. 11].

Theorem 12. [Ref. 9] Let the linear optimization problem, P, be such that
M,,+, is closed, and the dual problem, D, is bounded. Then D has a solution.

The proof of this theorem is straightforward. Recognize that the objective function

of the dual is f : .V"+l _-+ R by f(zo, z 1,..., zn) = zo. Then f is clearly continuous,

on a compact set, and we conclude the result.

Theorem 13. [Ref. 9] Any convex cone P defined by a finite number of vectors
in IV is closed, in that any convergent sequence of vectors in P converges to
a vector in P.

Coupling these observations, We conclude that any finite dual pair,

(P, D), with both P and D consistent, is solveable. That is, both the primal and

dual have solutions.

63



H~y, O)
1=(x: <x.y>=O}

Figure 12. The Separating Hyperplane H(y, v) of the Set, M, at the Point z.

3. Separating Hyperplanes

We now address the final tool that we use to eliminate a duality gap

in the linear program. Let H(y, v) = {x e IZP : yTx = v}. Then the hyperplane,

H(y, v), is said to separate z, a vector not in M, from the convex set, M, if

yT _< V < yTz,

for all x c M. Figure 12 illustrates one seperating hyperplane between the point z

and the set M which is contained in R2 Let zo be the vector in M closest to z in

the Euclidean norm sense. Let y = z so, and let v = 0. Then H(y, v) is the line

orthogonal to y at the point zo.

Theorem 14. The Separation Theorem [Ref. 9] Define Ilxii to be standard
Euclidean 2-norm. Let M C IZP be a non-empty, closed convex set, and let z
not be in M. Further, let zo be the unique vector in M such that liz - zoll _5
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11z - xJl for all xc M.e Finally, let y = z - zo, and L, = (z - Zo)Tzo. Then the
hyperplane, H(y, v) separates z from M.

Proof: Let x e M, and fix 0 < p _< 1. Then

(I - P)ZO + Px = ZO + P(x - ZO) f M,

as M is a convex set. Further,

Iz -Zo0l 2 < iz- (Zo + P(x - zo))2

- llz- zoll2 - 2(- z- Zo) + P2 lix-- zol11,

which implies that

(Z - zo)T(x - ZO) i •pIx - zo11'.

Let p -+ 0. Then

(Z-Zo)Tx < v, foranyxcM.

Then by the definition of a separating hyperplane, we have only to show that v < yTz.

Since z is not in M,

0 < Iz _- Zo112 = (z- zo)T(z zo)

=yTZ - yTzo =yTZ - v.

The separating hyperplane defined above is a necessary tool in the elim-

ination of duality zaps in the finite linear optimization problem.

'That such a unique vector exists is proven in (Ref. 9].
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4. The Strong Duality Theorem

We close this section with a statement and proof of a fundamental

theorem of linear optimization, which states sufficient conditions for the absence of a

duality gap in the dual pair, (P, D).

Theorem 15. [Ref. 8] Let the dual pair, (P, D) satisfy the following assum-
"tions.

1. The dual problem is consistent and has a finite value V(D).

2. The moment cone, M,+1 is closed.

Then (P) is consistent, and V(P) = V(D). That is, no duality gap occurs.

Proof: Let let the vector, c = [co, ci,... ,Cn]T f M+,, be an optimal solution of

the dual problem. Then, for any c > 0, the vector, c' = [co + 6, c1,... ,icnIT is

not in M.+,. As we are assuming that M,,+, is closed, we conclude that there is

a hyperplane separating the vector c' from M,+,. Consequently, there exists some

vector y = [yo, y:,... , yn]T t Rn+l, with y # 0, such that

E _Xr3 : 0 < YO(co+e)+ C'Y,
rr=1

for x = (Xo, X1 ,... ,xn]T f M,+ 1 . Let x = c. Then yo e > 0, implying yo > 0. Now let,

x = [b(s),a,(s),.. . ,an(s) t A' C Mn+1.

where s t S, and a,.(s) is the 7-` component of the constraint vector associated with

a. Then
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which implies,
y, [_Y1 -- Yn IV

SYo

is feasible for the primal, P. Further,

0 < yo(o + C)+ cy,,
r=1

Applying the duality lemma, we conclude that

n

V(P) _< yy', < co+e = V(D)+e V(P)+e,
r=i

implying

V(P)- < V(D) <V(P)

for any c. 0

Of a final note, if the index set of our constraints is finite, then we may

conclude immediately that no duality gap exists in the dual pair, (P, D). This follows

directly from the above theorem in conjunction with Theorems 12 and 13.

F. THE SIMPLEX ALGORITHM

We present a very brief introduction to the Simplex algorithm, and use it to

solve a simple LOP. This section is not intended to illustrate the implementation

of the algorithm in any specific form. Rather, this section attempts to explain the

algorithm as it exploits the results of the duality concepts above. The problem is

assumed to be infinite-dimensional in this presentation.
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We begin with a problem, P, of the form:

Minimize: E.=1 c.iY,.

subject to: E%, a, (.)y, ? b(s), for all s 8 S.

Then we write the dual, D:

Maximize: E7.., b(si)xi

subject to: E7 1 a,(si)xi = cý, r = 1,2,...,n

si e S, Z 2! O.

Choose some subset, {s3,s,...,s,,) C S, and a vector x = [Xi,X2,...,Xn]T

that is feasible for the dual. The methods to arrive at an initial feasible vector,

provided one exists, may be found in any Linear Program text. In particular, the

reader is referred to [Ref. 7]. We derive a vector y from our choice of oa, which is

associated with the primal problem. As a matter of convenience, we abbreviate this

set of values, {fo, x,y}. We require that the vectors, a(si) be linearly independent.

That we may always find a set of linearly independent vectors is assumed in this

presentation.

Forming our matrix A as before, we know that the linear independence of the

vectors ensures that there is a unique vector, x satisfying:

Ax =c

since we are feasible in the dual. Define the discretized primal to be the linear

program that results in considering only the finite subset of the index set S. Let
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A(sI, 2,-. .,,) = [a(s 1),a(s2 ),.. . , a )], with b(s. ... s.) defined in the same .-,an-

ner. From the discretization, a, we iok for a vector, y, that is feasible for ti Us-

cretized primal, P. We note that one such vector, y solves the equation:

AT(s1,S 2 ,..., s-,)y -- =b(si, s 2,. • •, sn).

Then

y = (AT) -b.

The set of values of a and the vector y that is formed in the manner above is called

a basic solution of the LOP. The steps of the algorithm, to this point are:

1. Select a subset, a C S, such that the vectors, a(sl), a(s2),... a(sn)
are linearly independent.

2. Compute the unique non-negative solution to the equation, Ax = -.

3. Compute the solution to the system, ATy = b,
for the discretized primal.

Return to the problem of approximating the exponential with a quadratic poly-

nomial - r the interval [0, 3]. We have formulated the problem with the constraint

vectors of the index sets, a(t+), and a(t-), given by

1 -1

t -t
a(t+)- , and a(t-)=

t2 _t2

11

Additionally, the constraint scalars were defined to be b(t+) = et , and b(t-) = -et,

and the objective function vector was given by c = [0, 0,0, 11T. The problem is
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minimize: cTy

subject to: a(t+)Ty _ b(t+)

a(t-)Ty _ b(t-) for all t e T

over all y ie IV.

Step One: Arbitrarily select a to be composed of the union of the sets or =

{O,21 C T- and ,2 = {1, 3} C T+.

Step Two: Compute the solution of the system

-1 1 -1 1 0

0 1 -2 3 Z2 0
= .(V.15)

0 1 -4 9 z3  0

1 1 1 1 14

The solution of this system is given by

X =- .ii ý -1

Step Three: Compute the solution of

-1 0 0 1 Y1 -e°

1 1 1 1 y112
(V.16)

-1 -2 -4 1 Y3 -e 2

1 3 9 1 k C3
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Figure 13. A First Approximation of the Exponential Function.

The vector y = [1.6342 - 2.2946 2.7445 .6 3 4 2]T is the unique solution of this system.

That is, y is feasible for the discretized primal. The first approximation is given by

p 2(x) = 1.6342 - 2.2946x + 2.7445X2. (V.17)

The graph of the exponential versus the approximation is given in Figure 13.

We here introduce a lemma that offers us a termination criteria for the algo-

rithm.

Theorem 16. The Complementary Slackness Theorem [Ref. 9] Let
the set, {fr, x, y} be as above. If the vector y is feasible for the non-discretized
primal P, and the following holds:

xi (ta,. i)y, -- b(,si) =0, fortr = 1, 2,...n.

Then we may conclude, that if the vector, y, as determined in step 3, is feasible
for the primal, P, we have found the optimal vector in our problem.

71



14 .. . .•

12-

10

6

4-

2-

0Fý= 0-5 1 1.5 2 -2.5 3

Figure 14. Absolute Error in the First Exponential Approximation.

In the current approximation problem, we find that the current solution does

not satisfy this criteria. We observe the graph of the absolute difference between the

functions and find that the error exceeds .6342 over the latter portion of the interval.

See Figure 14.

The remainder of the algorithm is a sequence of exchange steps that replace

existing elements of the set, o, with elements that improve the value of the dual

problem, D, and consequently, improve the bound of V(P). The method of selecting

new elements to the set, a, may change with implementation, but it should be noted

that exactly one element of the set o is replaced at a given step, in any implementation.

Recalling from our discussion of extreme points of our feasible set, that strategy

ensures that the algorithm looks to adjacent extreme points for optimality.

We conduct one such exchange. Note that the error is most severe at the
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Figure 15. Absolute Error in the Second Exponential Approximation.

point t = 3. Then it is logical to seek a better solution at that point. Then we let

01f = {0, 3}. The new system of equations requiring a solution in step 3 is

-1 0 0 1 Y3i -e

1 1 11 /Y2 I el
= (V.18)

-1 -3 -9 1 Y3 -e3

1 3 9 1 k eI3
A J

The solution of the above system is given by

y = [ 0 9 iiT

We find that the error is decreased. The absolute error is given in Figure 15.

We note that the solution is not feasible for the entire interval, since there

exist points where the error exceeds .5. Thus, we would look to adjacent extreme

73



IWITN 
--

point solutions and repeat the process until we arrive at a discretized solution that is

feasble throughout the interval.
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VI. RECONSTRUCTION FORMULATION
AND SOLUTION

A. OVERVIEW

Having laid the complete foundation, we formulate the image reconstruction

optimization problem. The first portion of this chapter addresses the conceptual

aspects of the problem, while in the latter portion we use the Simplex algorithm to

solve a simple reconstruction problem. We conclude the chapter with a brief discussion

of the merits and drawbacks of a Linear Programming approach to the reconstructi,

problem.

B. TARGET FUNCTIONS AND NORMS

The problem we wish to solve is to find the density function, f, that produces

the observed sampled Radon transform. As the problem is ill-posed, we must define

some preference function by which to compare the quality of the infinitely many

density functions that satisfy the above requirement. We do so by specifying some

function, g, defined over f, which is assumed to represent the most likely density

of the image. That is, of all density functions that produce the observed transform

data, we seek that which is most like what we expect to find. How we determine the

function g is not a matter of discussion here. We only assume that we know some

such function.
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The problem of how to determine the best solution becomes one of finding

the density function that produces the observed transform that is "closest" to g in

some sense. We choose the infinity norm, or max norm, to measure closeness. Let

P be a polygonal partition of the compact set fl C V2, consisting of the n polygons,

S1, v527,.. • , . Recall that the function 01 (w) is defined to be the characteristic function

of polygon j in P. Imposing the restriction that the optimum density be constant over

each polygon, the density takes on the form,

n

j=1

We seek a density, f defined over f? that minimizes the following:

- = max {maxI cr -g(w) I}. (VI.1)

We also choose some i > 0 and insist that

fp-b <5 i, and

f __ 0,

where the vector inequality is componentwise. Recall that fp is defined to be the

sampled transform of the density f for partition, P. The vector b is the observed

sample Radon transform. The non-negativity constraint stems from the physical

nature of the problem. That is, we do not accept solutions that attribute negative

density to physical objects.

Before continuing, let us consider the objective function of equation (VI.1).

Recall that our attention is fixed on density functions defined on 11, a compact subset
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of 7V2. Let us first fix our attention on some polygon, si, in the polygonal partition P.

Let MA denote the largest absolute difference between our target function, g and the

scalar, aj, that we associate with the polygon, sa. That is, f(w) = a,, for all w f s,.

The term

max I ai - g(w.) I

is well defined, as both functions are piecewise continuous over the compact set, s,.

The objective function is defined to be the largest of the M, values over all polygons.

As the problem is not linear, we write an equivalent formulation:

minimize: k

subject to: 1l1p-bllo _<

a, + k > g(w)?k,(w), for all w f Q,

-a 3 + k > -g(w)Ob(w), for all w E,

a, _Ž 0, for all j. (VI.2)

Suppose the target function, g, is chosen to be continuous over 11, and further

suppose that §p = b, where §p is the sample transform of the target density, g.

If the method is to prove worthwhile, we expect that the test density function is

optimal. That is, if the test and target densities are the same, we can expect to find

an arbitrarily good approximation of the test density. We state the above formally.

Theorem 17. Let g be a non-negative, continuous function defined on the
set fl. Additionally, let values for c > 0 and 1 > 0 be given. Then there exists
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'me partition, P, of na polygons, and an associated function, f E.. oO,
so that the optimum value of the linear optimization problem:

minimize: k

subject to: IIfP- MPI. < : (VI.3)
a, + k > g(w),,,, for all,,, fl, (VI.4)

-ai + k > -g(W)Ok, for all, W fl, (VI.5)
a, 0 0, for all j (VI.6)

is less than e.

Proof: We show that we may find a feasible vector for any value of k, and con-

sequently, for k < c. The proof depends on the continuity of the sample Radon

transform. That is, let g be any continuous function defined on fl, and let 1 > 0 be

given. Then we wish to show that there exists some 61 > 0 and some partition P51

such that the following property holds:

Ilf - 911A. < 6• =, HIP, - §PII, 11 < .

Let h(w) =1 f(w) - g(w) I . Recall that for a fixed partition, a single integral over a

strip, q, defining the sample transform takes on the form

="(I-

where -y,(w) is the characteristic function of the q4' strip. Let M denote the area of

the largest polygon in our partition, choose our 61 to be less than --. That is, let

the functions f and g differ by no more than 61 in the uniform norm sense. We have

already proven that we may do so for some partition. Then we know for each element
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of our sample data vector

< w (J,(dh)•)
-jyq(w)dw)

E M ,

_< . (VI.7)

As VI.7 holds for each of the finite number of sample integrals, we may conclude that

UPS, - §P11 11. < i.

Thus, if we can disregard constraints, VI.4, VI.5, and VI.6, for any 1 > 0, we

may find a partition Ps, that ensures

IIf -gl -<I 6

so that

U[P,, - 9h,,[o - .

This implies that for any value of 4, constraint (VI.3) is met.

Temporarily disregarding the constraint 11p - §PIloo -5 4, we have the less

restrictive optimization problem:

mininize: k

subject to: ai + k > g(w)%b(w), for all w c fl,

-aj + k >_ -g(w)Oi(w), for all w c fl,

aj 2 0, for all j. (VI.8)
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That the value of the above optimization problem may be made arbitrarily small

is a direct result of the fact that we may represent any continuous function. g on

fl arbitrarily well by a function of the desired form, per Theorem 2. Denote the

partition for which the value of k is less than e by Ph. The term 62 is the largest

largest difference between two points in the same polygon of P. That is,

X, Y C ifP62 := IIX-Yll00 < 62.

Finally, choosing 6 to be the min{f6 ,621, constraint VI.3 is met, as are con-

straints VIA through VI.6 for k < e. Then the problem is feasible. As this is a finite

dimensional problem, we employ Theorem 13 to ensure that a solution to the problem

exists. Therefore, the optimal value of the optimization problem is less than C. 0

From the above claim, we expect that if our partition is sufficiently fine, then

we may reasonably expect to find an acceptable approximation to the solution of our

optimization problem.

C. PROBLEM STANDARDIZATION

We wish to understand the above formulation as it relates to our definition of

the general linear optimization problem. Before proceeding, it is vital to note that

we are formulating the problem after we have generated a polygonal partition, P, of

fl. Throughout this section, we assume that P contains the n polygons, s3,.... i,.
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1. Inner Product Constraints: Refining the Feasible

Set

Before considering the constraints themselves, recall that the polygonal

partition, P, forms an n-dimensional basis for a subset of the space of functions from

which we select our optimal function. We may, consequently, think of any density

function f as a vector y i IV, where the jth component of y is the scalar value of the

density on polygon, si. For reasons that become clear shortly, we augment the vector

of decision variables to be y = [a,, a2,..., an, k]T c Rn+l.

We divide our constraints into three distinct classes:

1) Strip based constraints,

2) Polygon based constraints, and

3) fl based constraints.

First consider the strip based constraints. We require that the sample

transform of the optimal objective density be within a specified tolerance of the

observed sample transform. The constraints were identified in the previous section

by the equation

llp - bll,. -• i.

Eliminating the norm above results in the two constraints

-fp _> -b - i, (VI.9)

and

fp 2> b- L (VI.10)
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Let m denote the number of strips used to generate the partition, P.

Let Q f {q, q,. . ., q,,) be the set of such strips. Then for each q ( Q, we require

that the j"' component of our constraint vector be determined by the following rule:

ai(q1 ) = area(si) maxf{yq(w) Oj(w)1.

Of course, this convention is the same as that of Chapter III. The jih component of

the vector, a(qi) is the area of the j" polygon if the polygon falls within strip q,, and

zero otherwise. As before, we wish to consider the two constraints associated with

each strip separately, and define Q- and Q+ to index constraints (VI.9) and (VI.10)

respectively.

The right hand side of each constraint is also determined as in Chapter

III. That is, b(q-) and b(q+) as in equations (VI.9) and (VI.10), where bi is the data

from strip q. of our sample transform. We append a zero to each strip based constraint

vector, as each is independent of the value k.

The polygon based constraints are found entirely in the requirement

that our density function be non-negative. In the initial formulation, the requirement

was written

a, > 0, for all j.

That is, we require that the density assigned to each polygon in the optimal vector

be non-negative. Let P S s 1, s2 ,... , s} be the fixed partition. Then the constraint
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vector associated with each polygon is forim 'y the simple rule:

ai(s,) = max{ji,(w) ,(w)},

1, ifi=j

0, otherwise,

for i,j =1,2,...,n.

We append a zero to each a(si) as in the case of the strip based con-

straints, as we are selecting a vector from I,"+". Clearly, b(si) = 0, for all i. Then the

vector form of each polygon based constraint is:

(a(si),y) _Ž 0, for i= 1,2,...,n.

As our third class of constraints corresponds to the set fl, we may

correctly infer that the final index sets are infinite. These index sets provide the

constraints that facilitate a comparison of solution quality. There are, in fact, two

such index sets, A+ and f-, as we again eliminate the explicit use of the infinity

norm from the formulation. In the initial problem statement, these constraints were

written

a + k _> g(w) Ob(w),

-ai+k > -g(w) Oi(w), for all•w•e fl.
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We focus only on the former, as fA- is formulated in a nearly identical

manner, and the process has been executed in the strip based constraints. We desire

constraints of the form (a(w+), y) 2! b(w+), for all w+ c fl+. Let

aj (w+) =j •(w+), for j -- 1, 2,. .. , n, Wo+ f +

a,+, (W+) = I, for all w+ f W+.

The associated b(w+) is defined to be g(w+). The constraints associated with the seL

fl- are formed in exactly the same manner, with sign changes as appropriate.

Concluding, we define our index set T = Q+ U Q- u P u 11+ U I-.

D. THE IMAGE RECONSTRUCTION DUAL

The image reconstruction optimization problem, as we have formed it, is a

specific example of the uniform approximation problem. Consequently, we find some

strong similarities in its dual problem to the dual of the approximation of the ex-

ponential function. Let us derive the dual, D, of our image reconstruction problem.

Note that this section is included in the interest of completeness. The material herein

is complicated and is not especially enlightening. The reader may wish to skip this

section.

We seek a subset, {tl,t 2 ,. . . ,tj C T, and the non-negative vector x =

[xi, x 2,. XT that maximize the equation

(b,x)
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and satisfies

(x, a(t)) -- c.

We address the selection of the subset first. Consider the strip-based con-

straints, associated with Q C T. Recall that Q = Q+ U Q-. We seek some subset of

each of these sets. We denote these subsets Q+, and Q-. With each element of each

subset, we associate a non-negative real number, x(4+), for j = 1,..., nj+, and x(4.-),

for j= 19,... , n-.

Considering the index set, P, with which we associated the polygon based

constraints, we seek some non-negative value z(Si) to associate with each constraint

of a subset P C P. Following the above convention, we let j = 1,...,rip.

Let us move to the infinite index sets, Q+ and [-. As we noted above, there

are two classes of constraint vectors associated with our index sets, fl+ and f-. In

particular,

01 )

and

For each of our index sets, f+ and f-, we seek some discretization

j+ - {w+,w+, ... + b and

= {wj,w- ,..., w,-_ }, as well as non-negative scalars,
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X(W,), (W2 .. ~wý and

Then the dual D is to find the above discretization and non-negative x values

that maximize the expression:

_Tz(qj+)b(qfl- x(q7-)b(qj) + z(.si)b(si) + ~jx(wý)b(w!) - x(w7-)b(wfl),

while satisfying the constraints:

Sx(qt)a,.(q, 4)-~ E (q-)a 7-(q7)+E x(,si)a,(si)+ F x(wt+)a,_(wP)-~ xF )a,_(wj) =0,

1= =1 i=1 i

for r=1, 2, .. ,n, and

-x(q!)an+l(qi+) - -Tq anlq

U,,

- x(wi-)an+l(iw)=1

x(qt)2ŽO, for =,..n*,

x(q7-)2!, for =,,.n*-
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x(si)2>O, for i=l,2,...,np,

x(wi+)2>O, for i=1,2,...,nA+, and,

x(w7')>O, for i=1,2,...,n_.

While the above formulation of the dual is intimidating, we may simplify im-

mediately by recognizing some features of the constraints of our primal problem. We

know that the scalar, b(s,) =_ 0, for all si. Then the middle term in the objective

function disappears completely.

Let us move to the first constraint. The middle sum also collapses to the single

term z(s4), as we have defined a7 (sj) to be the Kronecker 6(r,j). The first three

terms of the second constraint disappear altogether, as we have specified, a,+i(sj) =

an+1 (si) = 0, for all j. The non-negativity constraints remain the same.

E. A SAMPLE SOLUTION

We now use the formulation of the image reconstruction problem as a linear

program to solve a simple problem. We first discuss the geometry of the partition

that we are using, and then identify some additional simplifying assumptions that

make the problem more tractable. We introduce the expected density of our sample

problem, and conclude with the Simplex solution of the problem.

1. The Partition

The partition that we use in this example is illustrated in Figure 16,

where the color of a polygon is a function of its area. Larger values correspond to
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Figure 16. The Partition of the Sample Problem

lighter colors. We have chosen the four angles 0, M, 1, and k, with five strips for each

angle. The resulting partition consists of 89 polygons.' It should be noted that each

strip has width of -. Consequently, as views at angles of 1 and k require more than

5 strips to cover the unit square completely, only the portion of the square that falls

in the five center strips is considered. The rest is ommitted.

2. A Simplifying Assumption

Rather than attempt to solve the infinite dimensional problem as de-

rived in the initial portion of this chapter, we project the target density onto the

n-dimensional polygonal basis of our partition. That is, we insist that the target

'The manner in which the polygons were identified and the areas of each polygon computed is
not a matter of particular concern here. It is sufficient to state that the symmetry of the partition
was deeply exploited in a manner which simplifies the problem of polygon identification and area
computation over 89 polygons to one of many fewer than 89.
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function be constant on each of the polygons of the partition. This simplification

reduces the infinite index sets ud fl- to finite sets, as we need only consider a

representative w i si for each polygon s. when determining the norm of the differ-

ence between our target function and optimal function. Without this assumption, the

problem is very similar to the infinite problem of approximating the exponential with

polynomials, which was discussed in more detail when the Simplex algorithm was

introduced. It is possible that this probler .Au_.ihle without this simplification,

but no attempt is made to solve it in this thesis.

We choose, in projecting the target function unto our finite dimensional

space, the density of the function over each polygon divided by the area of the polygon.

That is, after the target function g is projected into the finite space, it takes on *fe

form:

where

= ( dA "

That is,8 _= the mass of g over polygon sj, divided by the area of polygon s,.

3. The Target Function

We now identify the target function of the sample problem. We use the

simple function,

g(XY)=( 2
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Figure 17. The Projected Target Function

for z e [0, 1] and y c [0, 1]. The projection of the density function is illustrated in

Figure 17. The particular data for the constant densities assigned to each of the

strips represent the values which we hope, or expect, to find in the solution of our

problem, before considering the data. That is, the values are assumed to represent

the most likely solution to our problem.

4. The Test Density

The density function that we use to generate the test data is given by

the expression

2i

{ (1 2 1)2 for

otherwise.

The density function is displayed in Figure 18. The values of sample transform

defining integrals become the right hand side of our equality constraints when we
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Figure 18. The Test Density Function

formulate the problem.

The manner in which we have defined the projection of a density onto

the finite dimesional space assures us that both the test density h and its projection

have the same sampled transform. Thus, barring catastrophic rounding error, the

formulation is always feasible. That is, there must be some density function that

produces the sampled transform, even after we have projected the test density onto

the partition. If the sampled transform is uniquely determined, we reconstruct the

projection perfectly, though the value of the variable k may be quite large.

As a basis of comparison, we note that the maximum difference between

the projection of the target density and the test density is given by d = .1949. We

may certainly expect then, that the optimal density varies by no more than the above

value of d.

91



Figure 19. The Simplex Solution of the Sample Problem

The optimal density as determined by the Simplex algoritm is displayed

in Figure 19. The value achieved for the maximum absolute deviation between the

target density and the optimal density is d' = .1577. We consider the difference over

each polygon in Figure 20.

F. SUITABILITY OF SIMPLEX IN IMAGE RECON-

STRUCTION

We briefly consider the merit of using the Simplex algorithm to solve the image

reconstruction problem. That is, we wish to consider how well the tool we have chosen

fits our particular job.

The results of this particular example show the tendency of this formulation

to spread error over the entire region. This consequence, it is believed, results from

the use of the infinity norm. We may also question the choice of target functions,
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and may look to other methods of qualification. However, the optimization problem

achieves what it is designed to achieve. That is, we have found the density that

satisfies the minimum deviation in the uniform norm sense.

We are also forced to consider the substantial data that are required to solve the

problem. The problem of polygon identification is a difficult one by itself, especially

in view of the fact that a typical partition for the CAT scan problem is generated by

200-300 angles with up to 500 strips per angle. With this geometry, we know that the

number of polygons exceeds 4,000,000. Further, we require the area of each polygon

be known to solve the problem as we have formulated it. Finally, as each polygon

gives rise to a variable in our primal problem, we are solving a problem in a subspace

of R" where n is quite large. On the positive side, we know that we must solve the

polygon identification and polygonal area problems only once. Further, the matrix,
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A which results from the formulation above is extremely sparse, which may lead to a

more rapid solution of the Simplex problem, or invite other methods of solving Linear

Programs.

In conclusion, the author contends that the Simplex algorithm fits well con-

ceptually, but may not suited for the vastness of the problem as it is formulated here.

Projecting the density functions onto the polygonal partion is conceptually identical

to selecting finite subsets of an infinite index set. The theorems presented in regard to

the image reconstruction problem indicate that we may solve the infinite dimensional

problem through a sequence of finite dimensional problems, when certain conditions

are met.

Some alternatives that might warrant future consideration are norms other

than the infinity uorm, or using the Simplex model to refine existing solutions to the

reimaging problem, where the number of variables is less restrictive.
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VII. CONCLUSION

In conclusion, we have introduced the Simplex algorithm in a context quite

apart from its usual applications. The principal vehicles for the exploration of the

algorithm were three unique applications, each illuminating distinct features of the

theory underlying the implementation of the Simplex algorithm.

In particular, we began with a problem of finding orthogonal monic polynomi-

als over a closed interval. This example led to a very basic Simplex formulation, and

was solved as a finite dimensional problem. The requirement that the polynomials

be monic facilitated the relatively simple formulation. Follow on problems to this

example might be the adaptation of the algorithm to generate an non-polynomial

orthogonal basis for an infinite dimensional function space, or perhaps to fit the al-

gorithm to solving the non-linear orthonormal basis generation problem.

Second, we formulated the problem of approximating a function over a closed

interval in the uniform norm sense. Unlike the first example, the problem was infinite

dimensional, in that the formuation required a constraint for every number in the

uncountably infinite set. This problem proved particularly helpful in illustrating the

principle of weak duality, and ultimately illustrated the Simplex algorithm itself. The

special qualities of polynomial approximation were ommitted, though the reader is

referred to [Ref. 91 for a more complete discussion thereof. Again, potential areas for
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future research might include approximation with functions other than polynomials.

Each of the above examples were used extensively to illustrate the highlights of

convexity and duality, upon which the Simplex algorithm is based. The treatment was

relatively general, though many of the theorems required that the linear optimization

problem be finite. Work is underway to identify classes of infinite dimensional prob-

lems which may be solved by a sequence of finite dimensional problems. The reader

is referred to [Ref. 11] for more complete discussion of this active area of research.

Highlights include infinite horizon planning, fuzzy set semi-infinite programming, and

linear programming in control theory.

Another area of focus in this paper was on the Image Reconstruction problem.

Again, this is an area of active research. After presenting the requisite background,

we formulated this problem as an infinite dimensional linear optimization problem,

and as a special case of the uniform approximation problem. Results were presented

that indicated that use of Simplex to solve a sequence of linear programs is conceptu-

ally sound, though not necessarily practical in view of the size of the problem. This

"• -plication of the algorithm, however, is open to more extensive research in a number

of areas. A different choice of norms by which the quality of density functions is

measured may eliminate a number of constraints. A technique for formulating opti-

mization problems with the 2-norm is found in [Ref. 12], and may prove useful in

this application. The Simplex algorithm may also provide an inexpensive method to

solve coarser problems, from which one may determine the necessity of constructing
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more detailed models. Alternately, there may be some utility in using the algorithm

to solve the reconstruction problem in only small portions of the set over which a

density is defined. If there is utility in such an application, the logical consequence is

research of parallel Simplex implementation.

The potential utility of the Simplex algorithm to unconventional applications

seems clear. Even when actual implementation of the algorithm is not practical, the

tools of convexity and duality apply to broader areas of optimization.
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